School of Mathematics
FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS
UNDERGRADUATE
DEGREES 2018

Come and find your place
IMPORTANT INFORMATION

Information provided by the University such as in presentations, University brochures and the University website, is accurate at the time of first disclosure. However, courses, University services and content of publications remain subject to change. Changes may be necessary to comply with the requirements of accrediting bodies or to keep courses contemporary through updating practices or areas of study. Circumstances may arise outside the reasonable control of the University, leading to required changes. Such circumstances include, industrial action, unexpected student numbers, significant staff illness (where a course is reliant upon a person's expertise), unexpected lack of funding, severe weather, fire, civil disorder, political unrest, government restrictions and serious concern with regard to the transmission of serious illness making a course unsafe to deliver.

After a student has taken up a place with the University, the University will look to give early notification of any changes and try to minimise their impact, offering suitable alternative arrangements or forms of compensation where it believes there is a fair case to do so. Offers of a place to study at the University will provide up to date information on courses. The latest key information on courses, entry requirements and fees can be found at www.leeds.ac.uk/courses. Please check this website before making any decisions.
A mathematics degree will provide you with a range of transferable and specific skills to help you in your future career. Mathematics graduates are numerate, intellectually independent, can think logically and laterally, and are able to identify problems and come up with real solutions. Employers love these skills. Whatever you want to do when you graduate, promoting these skills to potential employers will aid you in your career aspirations.

Many of our mathematics graduates go on to careers in business and finance. There is also a great need for mathematicians in diverse areas of science and technology. Wherever you end up, the universal nature of mathematics means that the skills you develop during a mathematics degree will equip you with analytical tools you can apply in your chosen career.

At Leeds we have an active research environment which enables us to offer exciting courses taught by experts who are leaders in their fields.

Your degree from the University of Leeds and the wider experience you’ll gain while you’re studying here will help you stand out from the crowd and secure that all-important graduate job.

“We are delighted that Leeds has been named University of the Year 2017 in the Times and Sunday Times Good University Guide, and particularly proud of the flexible degree programmes and outstanding education that we can offer in mathematics.”

PROFESSOR ALASTAIR RUCKLIDGE, HEAD OF THE SCHOOL OF MATHEMATICS
Your course. Your choice.
The great thing about studying mathematics at Leeds is the large amount of choice that comes with many of our courses.

As one of the UK’s biggest maths departments, our BSc and MMath, BSc Mathematics degrees are able to offer you a very wide range of optional modules, spanning areas from transformation geometry and graph theory to cosmology and Bayesian statistics.

You can even study topics from areas outside mathematics through our optional discovery modules. There are hundreds of discovery modules to choose from, allowing you to pursue interests outside mathematics during your course.

Whether following your own interests or looking to enhance your future career prospects, the choice of how or whether to specialise is yours.

We’ll also give you the chance to study abroad or undertake an industrial placement during your degree, helping you to gain unforgettable and valuable experiences.
GREAT CAREERS

Over 97% of our recent graduates were employed or had started further study within six months of graduating (DLHE).

The city of Leeds is a major financial services and business hub, making it a great place for mathematicians to study and start a rewarding career.

You could go on to work in a whole range of industries such as finance, engineering, teaching or software development, or you might even start your own company.

INTEGRATED MASTERS

Some of our degrees are available as three-year BSc degrees or four-year MMath, BSc Integrated Masters degrees.

An Integrated Masters is a four-year degree that extends your studies to Masters level, enhancing your career prospects or setting you up to pursue a PhD.

It is possible to transfer between BSc and MMath, BSc variants of a course during the first two years of your studies.

ACCREDITATION

Several of our courses are accredited by the Royal Statistical Society (RSS), including our BSc/MMath, BSc Mathematics, BSc Mathematics and Statistics and BSc Mathematics with Finance programmes. Studying a course accredited by the RSS is the first step towards achieving chartered statistician status.

STUDENT SUPPORT

We take fantastic care of our students. You’ll be assigned a personal tutor to guide you through your studies with us and can receive lots of support from fellow students through our popular peer mentor scheme.

Using our Virtual Learning Environment, you can access learning resources including reading lists, past exam papers, skills guides and assessment guides. You’ll also be able to play back video recordings of your lectures and download lecture notes.

JOIN THE MATHS SOCIETY

You can join the student-run Maths Society, which brings together students from all years with an interest in maths, whether this comes through their course or through extracurricular activities. The society holds a number of social events, including pub quizzes, meals, the MathSoc Christmas Ball and the infamous weekend trip away to a European city!

WORLD-LEADING FACILITIES

We have all the facilities you’ll need to support and enhance your academic studies and the University is investing millions of pounds each year to ensure we maintain a first-class academic environment. From lecture theatres to one of the largest and most impressive libraries in the UK, you’ll find everything you need for your studies right here on campus.
STUDENT STORY

NATALJA DOROSENKO
MMATH, BSC MATHEMATICS STUDENT

I really enjoy the freedom we are given when it comes to what type of maths we can do. In the first two years we have some compulsory modules, which allows us to try every branch of maths to then later decide what our preferences are. In our final year, we are given a long list of many optional modules to choose from, ranging from pure and applied maths to statistics and finance.

I want to get into data science, specifically for social media. Last year, I got in touch with a Leeds-based company, did an internship with them, and realised that that’s what I want to do. Because of the large amount of optional modules we have, I can choose modules that will give me the right skills to work in that area in the future.

Not only is there a lot of freedom within the maths course, there is also the option to take discovery modules, which are modules outside of the School of Mathematics. I am thinking of taking a foreign language module next year, to give myself a bit more variety in what I’m learning.
STUDENT STORY

JACK DAVIS
BSC MATHEMATICS STUDENT

My favourite thing about my course is the freedom to study what I want. Maths is an incredibly broad subject and Leeds appreciates that. The range of optional modules on offer lets you study the maths you find most interesting. You can focus on certain branches of maths if you like or take modules in a variety of areas.

I’ve chosen a pretty broad range of modules, studying pure maths, such as logic and geometry, alongside maths that is more applied, such as fluid dynamics. Because of this, the maths degree at Leeds is actually quite unique to each individual student. You sculpt your learning to suit your interests and this really lets you make the degree your own.

My favourite module so far has been mathematical logic, which looks at the requirements for, and implications of, truth and falsity. It’s one of the pure maths optional modules that I’ve taken this year and is a type of maths I’ve never seen before. I find the way it breaks down the nature of argument and applies a mathematical approach really interesting and also quite philosophical.

I am going to study at Lund University in Sweden next year. I’ll be sad to leave Leeds for a year but the idea of living somewhere totally different, experiencing a new culture and learning a new language is incredible.
Mathematics is a far-reaching discipline, encompassing many fascinating topics. Because the subject is so diverse, we offer mathematics courses that are flexible and provide a huge amount of choice, allowing you to explore areas that most interest you.

In year 1, you’ll be given a solid grounding in the major branches of mathematics, including calculus, algebra, statistics and mechanics. Having been able to establish where your interests lie in your first year, the years that follow allow you to study these areas in greater depth.

In the second year of the course, available modules span topics in statistics, pure, applied and computational mathematics. You’ll have options as varied as fluid dynamics, environmental statistics and mathematical logic. You can start to specialise in a particular area of mathematics according to your interests or aspirations. Or you can retain a broad mathematical base and explore several different areas.

The third and fourth years of our mathematics courses are devoted to advanced modules covering the spectrum of mathematics topics. In the final year of both the BSc and MMath programmes, you’ll carry out an independent research project. There are several themes that your project can relate to and you’ll be able to choose a topic that interests you or (for MMath students) even propose a topic of your own.

You will graduate as a multi skilled mathematician, perhaps with a particular expertise, with the training necessary to work in a specific industry, or with a broad knowledge of a range of mathematical topics.

“Throughout school and college, I knew that I wanted to take a mathematics-based career route, so for me it was a no brainer to study mathematics at university. I have always enjoyed the problem-solving aspects and the fact that it is the only universal language is incredible.”

MARIA ROBSON,
BSC MATHEMATICS
This course integrates the study of mathematics with business finance, accounting and economics. You'll be introduced to the major areas of mathematics and finance and develop a broad base of mathematical and financial skills.

On this course, you'll be taught jointly by the School of Mathematics and Leeds University Business School. Two-thirds of your time is spent on mathematics, including modules in financial mathematics covering modelling of financial and insurance markets, as well as pure, applied and statistical modules.

The remaining one-third is spent studying business finance, accounting and economics.

In the first year of the course you'll study key mathematics topics, including calculus and mathematical analysis, numbers and vectors, probability and statistics, and financial mathematics. In addition, you'll be introduced to financial accounting, management accounting and economic theory.

In the first year of the course you'll study key mathematics topics, including calculus and mathematical analysis, numbers and vectors, probability and statistics, and financial mathematics. In addition, you'll be introduced to financial accounting, management accounting and economic theory.

The second year builds on the knowledge you acquired in first year, with more in-depth modules on financial mathematics, statistics, accounting, microeconomics and macroeconomics. There is also a chance for you to broaden your knowledge base through optional modules in topics such as computational mathematics and survival analysis.

In the final year, about one-third of your time is spent on core modules in banking and finance, data analysis and stochastic financial modelling. In the remaining time, you have freedom of choice to pursue particular interests through a wide range of optional modules devoted to mathematics, statistics, finance, business studies and economics.

For full course details, including module information, visit www.leeds.ac.uk/courses
Actuaries use a variety of mathematical techniques to solve real business problems. This involves reasoning about risk, and quantifying the impact of undesirable events.

This programme covers much of the content of the actuarial profession’s (Institute/Faculty of Actuaries) core technical subjects. On graduation, you will be able to apply for exemptions from some of the actuarial profession’s exams.

There is an increasing demand for actuaries in both the private and public sector, working in a variety of areas such as banking, investment management, consultancy, manufacturing, transport, insurance and pensions.

On this course, you’ll be taught jointly by the School of Mathematics and Leeds University Business School, exploring key topics in mathematics, finance, economics and accounting. The work is intellectually stimulating, while also preparing you for a potential career that is highly rewarding financially.

In the first year of the course, you will study key topics in mathematics, finance, economics and accounting, including probability, statistics, and the mathematics of financial and insurance markets.

In the second year, you’ll study core modules in financial mathematics, statistical methods, and business finance. At this stage, you’ll also be able to choose some optional modules.

In the final year of the course, you’ll have further core modules in actuarial mathematics, financial modelling and statistics. You’ll also be able to choose from a wide range of optional modules in mathematics, statistics, finance and economics, allowing you to explore the topics related to actuarial mathematics that really interest you.

MATHEMATICAL STUDIES

Mathematical Studies BSc:
UCAS code G150 / Entry grades AAA – A*BB / Duration 3 years

This course shares many common features with our BSc Mathematics programme, the difference being the increased amount of time that Mathematical Studies allows you to dedicate to subjects other than mathematics.

Approximately two-thirds of your degree will be mathematics modules. In each year, up to one-third of your study can be devoted to optional modules from across the University in areas such as art, business, education, environment, history, languages, law, music, philosophy, psychology, and more.

The first year of your course will introduce you to the main branches of mathematics, and you’ll develop a solid understanding of these core areas.

In your second year, you’ll build on your mathematical grounding from the first year. The majority of the mathematics modules you’ll study will be your choice; you can choose from different branches of mathematics, such as algebra, geometry, logic, analysis, statistics and computational mathematics.

In the third year there is complete freedom to study a variety of options. You’ll have total control over which modules you study, provided you meet the module’s prerequisites. You can specialise in pure mathematics, applied mathematics or statistics, or choose modules across the spectrum of subjects. You’ll also have a final-year project, for which you’ll receive research skills training and carry out independent research.
BIOLOGY AND MATHEMATICS

Advances in biological science have stimulated the development of new mathematics, leading to new ways of understanding our place in the universe. On this course, you’ll study topics at the cutting edge of biological discovery while exploring the major branches of mathematics.

This course allows you to study biology modules that reflect the complexity of the subject area, encompassing everything from molecules to populations of organisms. In mathematics, you’ll study key topics – from calculus and algebra to probability and statistics.

In your first year, your studies in biology may include cell biology, genetics, biodiversity, applied biology or agriculture. In mathematics, you’ll be given a firm grounding in core topics such as calculus and mathematical analysis, differential equations and linear algebra.

In year 2, your mathematics modules will include vectors, statistics, and linear and nonlinear differential equations. In biology, you’ll study the biology of plant life, evolution of organisms and genetics. Optional module topics at this stage include bioinformatics, environmental statistics, fluid dynamics, animal behaviour and human population.

In year 3, you’ll undertake a research project in biology or mathematics. You’ll also study mathematical biology and take a combination of optional modules from a range of pure, applied and statistical topics, and a variety of biological modules, on subjects including zoology, evolution and food security.

ECONOMICS AND MATHEMATICS

This degree will give you firm foundations in the major areas of mathematics and economics and enable you to explore mathematical applications in economics.

On this course, you’ll be taught jointly by the School of Mathematics and Leeds University Business School, spending about half your time at each. Your economics modules will give you in-depth understanding of major topics in economics. You’ll get to grips with concepts including supply and demand, and scarcity, and you’ll study key techniques in econometrics.

Your mathematics modules will provide a solid grounding in core topics such as algebra, calculus and statistics. Optional modules allow you to explore topics in pure and applied mathematics.

In your first year, you’ll be introduced to micro- and macroeconomics, and will study the key labour market ideas and develop knowledge of the structures and institutions of industry. In mathematics, you’ll study core topics including probability and statistics, calculus and mathematical analysis, and linear algebra.

In year 2, you’ll continue to study micro- and macroeconomic theory and will learn more advanced techniques. You’ll be introduced to econometric tools you can use to test economic theory and study the theory and practice of optimality. In mathematics, you can choose from modules on topics such as statistics, financial mathematics, differential equations and discrete mathematics.

In your final year, you will undertake a project in either mathematics or economics. For the remainder of the year, you can choose from a wide variety of optional modules in economics and mathematics.
This course allows you to explore mathematics, statistics, economics and psychology in the context of business management. You’ll develop knowledge and understanding of how your mathematical and statistical skills can be applied in the world of business.

On this course, you’ll be taught jointly by the School of Mathematics and Leeds University Business School, spending about half your time at each. The course will enable you to appreciate the connections between quantitative techniques and management theory, which will give you an edge in understanding the mathematical representation of business situations and the evaluation of evidence within complex organisational systems.

In your first year, you will learn about key ideas from economics and human behaviour in organisations, while in mathematics you will study core topics, including calculus, differential equations, linear algebra, probability and statistics, and financial mathematics.

In year 2, the management aspect of your course will encompass modules in marketing, anthropology for business, and organisational behaviour in practice. You’ll also be able to choose optional modules on topics ranging from corporate social responsibility to global business history. Within mathematics, you’ll develop your knowledge of statistics and have the option to explore financial mathematics, computational mathematics, mathematical analysis, and more.

In your final year you will undertake either a management dissertation or a project in mathematics. In addition, you’ll be given a wide variety of management and mathematics options from which to choose.

Links between mathematics and music have been known since the time of Pythagoras. From the vibration of a guitar string and the analysis of a rhythmic pattern to the use of randomness in 20th century experimental music, mathematics continues to impact music at every level. This course provides a thorough grounding in mathematics, music and the deep connections between them.

In your first year you’ll study key mathematics topics, including calculus, differential equations and linear algebra, plus you’ll have the option to study geometry or probability and statistics. Your studies in music will include understanding music and the science of music, with the option to study either performance or composition.

In year 2 you will study the mathematics of music, vector calculus and music in context, as well as optional modules from a wide range in both subjects. Your music studies could explore the psychology of listening and performance or interpreting music. In mathematics, modules are available across the major branches of the subject, from algebra to numerical analysis.

In your final year, you will undertake a project, which could be focused on mathematics or music. You’ll have a great deal of independence in shaping your studies due to the variety of optional modules available, allowing you to specialise in your particular areas of interest.
FROM SOLVING ALGEBRAIC EQUATIONS TO CONJUGATING IRREGULAR VERBS, BOTH SUBJECTS INVOLVE DECIPHERING, DECODING AND DERIVING MEANING, WHETHER ANALYSING AND INTERPRETING STATISTICAL DATA OR SOCIOCULTURAL CONTEXT.

These degrees balance two types of creativity: the theoretical analysis and problem-solving of mathematics, and the communicative and cultural insight of language studies.

 Needless to say, both aspects of these degrees are highly applicable in the wider world, offering a wealth of exciting employment opportunities for graduates.

In your first year you build on your existing knowledge, studying key modules including: French language awareness and skills or German core language; introduction to French studies or either introduction to modern Germany or approaching German culture; calculus and mathematical analysis; and introductory linear algebra.

In year 2 you will engage with the breadth and depth of your subjects, supplementing core study with optional modules.

In year 3 you will embark upon a year abroad either on the Language Assistantship Scheme, an overseas work placement or on an international university placement studying alongside native students.

In year 4 you specialise in areas of your own interest. For your final-year project, you will undertake an autonomous piece of research work which may cover either or both of your joint honours subjects.

FRENCH/GERMAN AND MATHEMATICS

French and Mathematics BSc:
UCAS code GR11 / Entry grades AAB / Duration 4 years

German and Mathematics BSc:
UCAS code GR12 / Entry grades AAB / Duration 4 years

This course explores the close relationship between mathematics and computer science. You will study core topics in both areas and specialise in topics which link the two schools at Leeds, in particular logic, algorithms, scientific computing, big data and complexity science.

In year 1 you will begin by covering a range of fundamental topics in computer programming, systems, modelling, applied mathematics, pure mathematics and statistics.

Later you can specialise in aspects of discrete mathematics, algorithms, scientific computation or complex systems.

The discrete mathematics theme explores development, analysis and application of algorithms for computationally hard problems such as in computer networking and security. Scientific computation focuses on analysis and implementation of high-performance and parallel numerical algorithms.

Applications include fluid dynamics, combustion and atmospheric dispersion. The complex systems specialism lays the foundation for the interdisciplinary study of the world around us, from genetics to ecology, from neuroscience to social networks, and from finance to the web.

You will also undertake an individual project, which is an opportunity for you to work on a detailed area closely with a member of staff.

COMPUTER SCIENCE WITH MATHEMATICS

Computer Science with Mathematics BSc:
UCAS code G4G1 / Entry grades AAA / Duration 3 years

Computer Science with Mathematics MSci, BSc:
UCAS code G4G2 / Entry grades AAA / Duration 4 years

This course explores the close relationship between mathematics and computer science. You will study core topics in both areas and specialise in topics which link the two schools at Leeds, in particular logic, algorithms, scientific computing, big data and complexity science.

In year 1 you will begin by covering a range of fundamental topics in computer programming, systems, modelling, applied mathematics, pure mathematics and statistics.

Later you can specialise in aspects of discrete mathematics, algorithms, scientific computation or complex systems.

The discrete mathematics theme explores development, analysis and application of algorithms for computationally hard problems such as in computer networking and security. Scientific computation focuses on analysis and implementation of high-performance and parallel numerical algorithms.

Applications include fluid dynamics, combustion and atmospheric dispersion. The complex systems specialism lays the foundation for the interdisciplinary study of the world around us, from genetics to ecology, from neuroscience to social networks, and from finance to the web.

You will also undertake an individual project, which is an opportunity for you to work on a detailed area closely with a member of staff.
MATHEMATICS AND PHILOSOPHY

Mathematics and Philosophy BSc:
UCAS code GVC5 / Entry grades AAB / Duration 3 years

From the ancient philosophies of Plato and Aristotle to Gottfried Leibniz and Bertrand Russell, mathematical and logical analysis has always helped shape philosophical thought.

Studying mathematics with philosophy will provide you with a thorough grounding in mathematical structures and techniques while allowing you to explore a range of philosophical concepts, such as logic, language and political philosophy.

In year 1 you'll study core modules in each subject, introducing you to key concepts and approaches in both maths and philosophy such as logic, linear algebra, calculus and moral philosophy. You'll also have the chance to choose from further optional modules or take discovery modules from across the University.

Later, in years 2 and 3 you will study a range of core and optional modules including: vector calculus and formal logic, quantum mechanics, coding theory, philosophy of logic and mathematics, the structure of reality and Kant’s ethical theory. You will also undertake a research project in your final year.

CHEMISTRY AND MATHEMATICS

Chemistry and Mathematics BSc:
UCAS code FG11 / Entry grades AAB / Duration 3 years

Chemistry and Mathematics MChem, BSc:
UCAS code F1GC / Entry grades AAA / Duration 4 years

Using the tools of advanced mathematics to understand the diversity and complexity of the chemical world is what really drives students on our chemistry and mathematics joint honours degrees.

On this programme you'll study alongside single honours chemists and mathematicians who are learning the same concepts and reaching the same depth of knowledge as you. As you move through the programme, you'll have the opportunity to specialise in a range of topics in both areas of your course and vary the split between the two components to study the topics that interest you the most.

Studying mathematics, you will develop your skills in core subject areas such as linear algebra and calculus. A wide range of optional modules available to you from your second year onwards will allow you to pursue areas from probability to coding theory, special relativity and financial modelling.

You will combine your mathematical skills with the study of chemistry to understand how and why molecules react and the methods that are employed to study them. Certain areas of chemistry, particularly the physical side, can be closely linked with mathematics. You will have the option to specialise in organic, inorganic or physical chemistry.

For full course details, including module information, visit www.leeds.ac.uk/courses
What I enjoy most about my course is the topics we do and the coursework we get given. Although it’s difficult, it is a great feeling when you finally figure out the solution to a question or a proof. There are lots of modules in different areas of maths such as statistics, finance, pure, mechanics, and more.

There’s a joke that I heard when I was younger that goes something like this: “A logician has just had a baby. His friends ask impatiently, ‘Is it a boy or a girl?’ The logician replies ‘Yes.’” It always made me want to understand the subject of mathematical logic more, so I was set on choosing it when I saw it offered as a second-year module! I also chose The Mathematics of Music, as I like music theory and composition so thought it would be interesting.

In first year I chose the computational module because I am really interested in programming. My favourite module was definitely Groups and Vector Spaces - I just loved the topic and it’s pure maths, which is my favourite type of maths.

An important factor in me choosing Leeds was that Leeds offers you a year abroad or a year in industry. Next year I am hopefully going to study in Singapore and I am so excited. It’s been so easy to apply and I got my first choice university which was a great feeling.
REWARDING CAREERS

Over 97% of our recent graduates have successfully secured employment or gone on to further study within six months of graduating (latest Destinations of Leavers from Higher Education survey).

From accountant to engineer, meteorologist to software developer, the career possibilities of a maths graduate are endless. A degree in maths can help to prepare you for some of the most highly-paid and enjoyable jobs in a variety of industries.

A mathematics degree will develop your analytical, writing, problem-solving, presentation, communication, team-working and computing skills, which is what makes you so employable as a graduate of this field. The city of Leeds is the UK’s second largest economy and second financial centre, making it an ideal place for mathematics graduates to begin great careers.

CAREERS AND EMPLOYABILITY SUPPORT

Throughout your time with us, to your final year and beyond, our dedicated Faculty Employability Team will be there to support, guide and advise you.

We support you from your first year through to your final year with a series of employability and careers activities. We’ll help you through the career decision-making process, support you in your applications for work experience and graduate jobs, and bridge the gap between you and employers.

Our specialist, qualified staff are there to help you succeed on the path to your perfect career, so you feel supported along the way.

You’ll benefit from:

- Maths at Work: a second year module providing insight into where mathematics may be used in a professional or commercial environment
- Timetabled employability sessions at all stages of your course
- Ongoing support to find internships and placements
- Practical help with developing a CV, making applications, and preparing for interviews and assessment centres
- One-to-one guidance or coaching appointments to focus on you and your future
- A series of employer-led presentations and workshops throughout the academic year
- Royal Statistical Society accreditation for several of our courses, which makes your degree more valuable in the eyes of future employers.

Our Careers Centre and Employability Team organise an annual STEM Careers Fair, giving you many opportunities to meet graduate recruiters, gain an insight into graduate jobs and explore placement and internship opportunities, giving you the best start to your career.

The University of Leeds is a top-five university targeted by employers (High Fliers 2017). Some recent employers on campus targeting maths students have included Accenture, Willis Towers Watson, EY, NHS Digital, Unilever and IBM.
INDUSTRIAL PLACEMENT

All of our degree programmes include the option to complete a placement year in industry, which would be the third year of your course.

We offer flexibility, so if you’re not sure if a placement year is for you, you can make your mind up when you are here, normally at the start of your second year.

Either way, from year one, you will be able to access support to enable you to make the most well-informed decision regarding your placement year search and applications. We have a dedicated Employability and Placements Officer who will work with you during a series of placement information and preparation sessions. These sessions will inform you of the wide variety of options available to you, what to expect from the application process and how to apply.

There will also be opportunities to book one-to-one appointments to help with your placement search, as well as access to a range of placements on the University’s vacancy system.

We successfully place students with a range of employers. Recent examples include L’Oreal, PwC, Goldman Sachs, National Grid, Intel and Converse.

STUDY ABROAD

All our courses give you the chance to study abroad as part of your degree.

You would typically spend your third year studying mathematics at a partner institution and then return to Leeds for your final year. Spending a year living and studying abroad is a unique prospect. You’ll have the chance to immerse yourself in another culture and gain unforgettable experiences.

You’ll also gain an overseas education and develop new skills that will impress future employers.

We have relationships with many international universities, representing some of the best places to study abroad across the world.

“I was fortunate enough to attend a year at the University of Alberta, Edmonton, Canada and cannot recommend it enough. It is by far the best year of my life so far.”

DANIEL RODRIGUES, STUDY ABROAD YEAR IN CANADA

“I’m spending my third year doing an internship for Converse in London. To come out of university with a degree and a year of hands-on employment experience holds some gravity about it.”

JAMES LONG, INDUSTRIAL PLACEMENT AT CONVERSE
Leeds is a large city which offers the best of both worlds. As well as being a vibrant, affordable and multicultural city, it’s also surrounded by some of the most beautiful, accessible countryside in the UK.

At the University of Leeds we guarantee an offer of accommodation for your first year, providing you apply by the deadline.

We offer a wide variety of quality accommodation, from modern, purpose-built developments to more traditional residences in a variety of locations from the heart of campus and city centre to leafy suburbs.
ARTS AND CULTURE

Leeds has been described as a ‘hotbed of creative cultural talent’ and enjoys a reputation for producing spectacular and innovative shows. It’s the only UK city outside London to have its own opera and ballet companies and boasts several theatres.

SPORT

Leeds has a great sporting tradition and was chosen as the host city for Le Grand Départ, the start of the 2014 Tour de France. The city is home to some great sporting teams, including Leeds United Football Club and Leeds Rhinos rugby league and Yorkshire Carnegie rugby union teams. Leeds is also home to Yorkshire County Cricket Club and international Test Match cricket.

SHOPPING

The opening of the new Victoria Gate shopping centre makes Leeds one of the largest shopping destinations in the UK outside London. From the beautiful architecture of the Victoria Quarter and the Grand Arcade to the stunning domed roof of Leeds Corn Exchange, Leeds is a true haven for anyone who wants to shop.

FOOD AND DRINK

You’re never far from a fantastic restaurant, café or pub, whether you’re in the city centre or one of the popular student suburbs. Many have special deals for students or early-bird menus, ideal for a student budget.

NIGHTLIFE AND MUSIC

Leeds’ nightlife is legendary, with clubs and bars offering music to suit all tastes. There are lots of live music venues in the city, including the 13,500 capacity First Direct Arena, the O2 Academy and Brudenell Social Club.

EXPLORING YORKSHIRE

At the heart of Yorkshire, Leeds is one of the greenest cities in Britain and within easy reach of traditional towns and cities such as York, Ilkley, Harrogate and Saltaire, as well as Yorkshire’s stunning coastline. The spectacular countryside surrounding Leeds – including the Lake District, the Peak District, the Yorkshire Dales and the North York Moors – provides the ideal environment for University groups and societies taking part in everything from caving and kayaking to cycling and walking.

CONTACT US

If you require any more information about our courses, modules, or any other aspect of studying mathematics at Leeds, please contact our Undergraduate Admissions Team.

Tel: +44 (0)113 343 5133
Email: maths.admiss@leeds.ac.uk
www.maths.leeds.ac.uk
ENTRY REQUIREMENTS
Our entry requirements typically range from AAA to A*BB at A-level, depending on which course you choose. We always require at least a grade A in mathematics. If you're taking further mathematics at A- or AS-level, we may make you an alternative offer. Where an A-level science subject is taken, we require a pass in the practical science element, alongside the achievement of the A-level at the stated grade. Excludes A-level General Studies or Critical Thinking.

We also accept a variety of alternative qualifications (check our website for details).

ENGLISH LANGUAGE REQUIREMENTS
GCSE English Language grade C (B for GL11 and GN12) or an equivalent recognised English language qualification, eg IELTS 6.0 (6.5 for GL11 and GN12) overall with no less than 5.5 (6.0 for GL11 and GN12) in each element.

ACCESS TO LEEDS
We’re committed to identifying the best possible applicants, regardless of personal circumstances or background.

Access to Leeds is an alternative admissions scheme which accepts applications from individuals who might be from low income households, in the first generation of their immediate family to apply to higher education or have had their studies disrupted.

For more details visit www.leeds.ac.uk/a2l

HOW TO APPLY
All undergraduate applications should be made through the Universities and Colleges Admissions Service (UCAS).

Full instructions on how to apply are available at www.ucas.com

POST-APPLICATION VISIT AFTERNOONS
Suitable applicants will be invited to a post-application visit afternoon, which gives you the opportunity to meet our academic staff and students, enjoy a tour of our facilities, view student accommodation, and find out more about your course.

SCHOLARSHIPS
The University of Leeds has a long-standing history of helping students to manage their finances while at University, with a comprehensive range of bursaries and scholarships available.

For more information, visit www.maths.leeds.ac.uk/undergraduate/scholarships.html

CONTACT US
If you require any more information about our courses, modules, or any other aspect of studying mathematics at Leeds, please contact our Undergraduate Admissions Team, go online, or follow us on twitter (@mathsleedsuni).

Tel: +44 (0)113 343 5133
Email: maths.admiss@leeds.ac.uk
www.maths.leeds.ac.uk