Metric ultraproducts of finite metric groups

Aleksander Ivanov

Institute of Mathematics Silesian Universyty of Technology

July 28, 2016

4 3 b

Metric groups with bi-invariant metrics

We consider metric groups (G, \cdot, d) which are complete metric spaces where the metric d is bi-invariant and is bounded by 1.

$$d(x_1, x_2) = d(x_1 \cdot y, x_2 \cdot y) = d(y \cdot x_1, y \cdot x_2)$$

for all $y \in M$.

Let \mathcal{G} be the class of all metric groups as above.

Metric groups with bi-invariant metrics

We consider metric groups (G, \cdot, d) which are complete metric spaces where the metric d is bi-invariant and is bounded by 1.

$$d(x_1, x_2) = d(x_1 \cdot y, x_2 \cdot y) = d(y \cdot x_1, y \cdot x_2)$$

for all $y \in M$.

Let \mathcal{G} be the class of all metric groups as above.

Metric groups with bi-invariant metrics

We consider metric groups (G, \cdot, d) which are complete metric spaces where the metric d is bi-invariant and is bounded by 1.

$$d(x_1, x_2) = d(x_1 \cdot y, x_2 \cdot y) = d(y \cdot x_1, y \cdot x_2)$$

for all $y \in M$.

Let \mathcal{G} be the class of all metric groups as above.

The **metric** in the ultraproduct $\prod_{i} (G_i, d_i)/D$ is defined by

$d((g_i)_I,(g_i')_I) = lim_{i \rightarrow D}d_i(g_i,g_i'),$

i.e. by the rule that the distance between $(g_i)_I$ and $(g'_i)_I$ is in the interval $(\varepsilon_1, \varepsilon_2)$ if and only if the set $\{i : d_i(g_i, g'_i) \in (\varepsilon_1, \varepsilon_2)\}$ belongs to the ultrafilter D.

 $\prod_{I} (G_i, d_i) / D$ consists of classes of the relation $d((x_i)_I, (y_i)_I) = 0$.

The **metric** in the ultraproduct $\prod_{i} (G_i, d_i)/D$ is defined by

$$d((g_i)_I,(g'_i)_I) = lim_{i\rightarrow D}d_i(g_i,g'_i),$$

i.e. by the rule that the distance between $(g_i)_I$ and $(g'_i)_I$ is in the interval $(\varepsilon_1, \varepsilon_2)$ if and only if the set $\{i : d_i(g_i, g'_i) \in (\varepsilon_1, \varepsilon_2)\}$ belongs to the ultrafilter D.

 $\prod_{I} (G_i, d_i) / D$ consists of classes of the relation $d((x_i)_I, (y_i)_I) = 0$.

/□ ▶ < 글 ▶ < 글

The **metric** in the ultraproduct $\prod_{i} (G_i, d_i)/D$ is defined by

$$d((g_i)_I,(g'_i)_I) = lim_{i\to D}d_i(g_i,g'_i),$$

i.e. by the rule that the distance between $(g_i)_I$ and $(g'_i)_I$ is in the interval $(\varepsilon_1, \varepsilon_2)$ if and only if the set $\{i : d_i(g_i, g'_i) \in (\varepsilon_1, \varepsilon_2)\}$ belongs to the ultrafilter D.

 $\prod_{I} (G_i, d_i)/D$ consists of classes of the relation $d((x_i)_I, (y_i)_I) = 0$.

Hamming metric: For $g, h \in S_n$ let

$$d_H(g,h)=1-\frac{Fix(g^{-1}h)}{n}.$$

An abstract group is **sofic** if it is embeddable into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Basic problem (Gromov): Is every group sofic?

Soficity

Hamming metric: For $g, h \in S_n$ let

$$d_H(g,h)=1-\frac{Fix(g^{-1}h)}{n}.$$

An abstract group is **sofic** if it is embeddable into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Basic problem (Gromov): Is every group sofic?

Soficity

Hamming metric: For $g, h \in S_n$ let

$$d_H(g,h)=1-\frac{Fix(g^{-1}h)}{n}.$$

An abstract group is **sofic** if it is embeddable into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Basic problem (Gromov): Is every group sofic?

For $a, b \in GL_n(\mathbb{C})$ let

$$\rho(a,b)=n^{-1}rk(a-b).$$

An abstract group is **linear sofic** if it is embeddable into a metric ultraproduct of $\{(GL_n(\mathbb{C}), \rho) : n \in \mathbb{N}\}$ (Arzhantseva, Päunescu). An abstract group is **weakly sofic** if it is embeddable into a metric ultraproduct of finite groups with bi-invariant metrics ≤ 1 .

An abstract group is **hyperlinear** if it is embeddable into a metric ultraproduct of $\{(U_n(\mathbb{C}), \frac{1}{2}d_{HS}) : n \in \mathbb{N}\}$, where d_{HS} is the normalised Hilbert-Schmidt metric (i.e. the standard l^2 distance between matrices).

For $a, b \in GL_n(\mathbb{C})$ let

$$\rho(a,b)=n^{-1}rk(a-b).$$

An abstract group is **linear sofic** if it is embeddable into a metric ultraproduct of $\{(GL_n(\mathbb{C}), \rho) : n \in \mathbb{N}\}$ (Arzhantseva, Päunescu). An abstract group is **weakly sofic** if it is embeddable into a metric ultraproduct of finite groups with bi-invariant metrics ≤ 1 .

An abstract group is **hyperlinear** if it is embeddable into a metric ultraproduct of $\{(U_n(\mathbb{C}), \frac{1}{2}d_{HS}) : n \in \mathbb{N}\}$, where d_{HS} is the normalised Hilbert-Schmidt metric (i.e. the standard l^2 distance between matrices).

For $a, b \in GL_n(\mathbb{C})$ let

$$\rho(a,b)=n^{-1}rk(a-b).$$

An abstract group is **linear sofic** if it is embeddable into a metric ultraproduct of $\{(GL_n(\mathbb{C}), \rho) : n \in \mathbb{N}\}$ (Arzhantseva, Päunescu). An abstract group is **weakly sofic** if it is embeddable into a metric ultraproduct of finite groups with bi-invariant metrics ≤ 1 .

An abstract group is **hyperlinear** if it is embeddable into a metric ultraproduct of $\{(U_n(\mathbb{C}), \frac{1}{2}d_{HS}) : n \in \mathbb{N}\}$, where d_{HS} is the normalised Hilbert-Schmidt metric (i.e. the standard l^2 distance between matrices).

For $a, b \in GL_n(\mathbb{C})$ let

$$\rho(a,b)=n^{-1}rk(a-b).$$

An abstract group is **linear sofic** if it is embeddable into a metric ultraproduct of $\{(GL_n(\mathbb{C}), \rho) : n \in \mathbb{N}\}$ (Arzhantseva, Päunescu). An abstract group is **weakly sofic** if it is embeddable into a metric ultraproduct of finite groups with bi-invariant metrics ≤ 1 .

An abstract group is **hyperlinear** if it is embeddable into a metric ultraproduct of $\{(U_n(\mathbb{C}), \frac{1}{2}d_{HS}) : n \in \mathbb{N}\}$, where d_{HS} is the normalised Hilbert-Schmidt metric (i.e. the standard I^2 distance between matrices).

Soficity ⊢ Linear Soficity ⊢ Weak soficity and Soficity ⊢ Hyperlinearity

Problem: Is every group weakly sofic (hyperlinear)?

/□ ▶ < 글 ▶ < 글

э

Soficity \vdash Linear Soficity \vdash Weak soficity and Soficity \vdash Hyperlinearity

Problem: Is every group weakly sofic (hyperlinear)?

A 3 1

Metric soficity

Metric sofic groups. Let \mathcal{G}_{sof} be the class of complete metric groups with bi-invariant metrics of diameter 1, which are embeddable as closed metric subgroups into a metric ultraproduct of finite symmetric groups with Hamming metrics. The set of all abstract sofic groups consists of all discrete structures of the class \mathcal{G}_{sof} .

Is $\mathcal{G} = \mathcal{G}_{sof}$?

Metric soficity

Metric sofic groups. Let \mathcal{G}_{sof} be the class of complete metric groups with bi-invariant metrics of diameter 1, which are embeddable as closed metric subgroups into a metric ultraproduct of finite symmetric groups with Hamming metrics. The set of all abstract sofic groups consists of all discrete structures of the class \mathcal{G}_{sof} .

Is $\mathcal{G} = \mathcal{G}_{sof}$?

Metric soficity

Metric sofic groups. Let \mathcal{G}_{sof} be the class of complete metric groups with bi-invariant metrics of diameter 1, which are embeddable as closed metric subgroups into a metric ultraproduct of finite symmetric groups with Hamming metrics. The set of all abstract sofic groups consists of all discrete structures of the class \mathcal{G}_{sof} .

Is $\mathcal{G} = \mathcal{G}_{sof}$?

Linear sofic metric groups,...

Let us define:

$\mathcal{G}_{hyplin} =$ **hyperlinear metric groups** = metric groups with bi-invariant metrics of diameter 1, which are embeddable as closed subgroups into a metric ultraproduct of all $(U(n), \frac{1}{2}d_{HS}), n \in \mathbb{N}$.

```
\mathcal{G}_{l.sof} = linear sofic metric groups = \dots.

(GL_n(\mathbb{C}), \rho), n \in \mathbb{N}.

\mathcal{G}_{w.sof} = weakly sofic metric groups = \dots

finite metric groups of diameter \leq 1.
```

Linear sofic metric groups,...

Let us define:

 $\mathcal{G}_{hyplin} =$ hyperlinear metric groups = metric groups with bi-invariant metrics of diameter 1, which are embeddable as closed subgroups into a metric ultraproduct of all $(U(n), \frac{1}{2}d_{HS}), n \in \mathbb{N}$. $\mathcal{G}_{I.sof} =$ linear sofic metric groups = $(GL_n(\mathbb{C}), \rho), n \in \mathbb{N}$.

 $\mathcal{G}_{w,sof} =$ weakly sofic metric groups = finite metric groups of diameter ≤ 1 .

Linear sofic metric groups,...

Let us define:

 $\mathcal{G}_{hyplin} =$ hyperlinear metric groups = metric groups with bi-invariant metrics of diameter 1, which are embeddable as closed subgroups into a metric ultraproduct of all $(U(n), \frac{1}{2}d_{HS}), n \in \mathbb{N}$. $\mathcal{G}_{l.sof} =$ linear sofic metric groups = $(GL_n(\mathbb{C}), \rho), n \in \mathbb{N}$. $\mathcal{G}_{w.sof} =$ weakly sofic metric groups = finite metric groups of diameter < 1. Metric ultraproducts Axiomatisable classes of metric groups

Relations, the metric case

$$\mathcal{G}_{\textit{sof}} \subseteq \mathcal{G}_{\textit{w.sof}} \subseteq \mathcal{G}$$

$$\mathcal{G}_{I.sof} \subseteq \mathcal{G}_{w.sof}$$

э

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

\mathcal{G}_{sof} , $\mathcal{G}_{l.sof}$, \mathcal{G}_{hyplin} , $\mathcal{G}_{w.sof}$ are axiomatisable!

Let C be a class of continuous metric structures. (For exmple let C be a class of mtrc grps as above, i.e. $C \subset G$.)

Theorem

The class C is **axiomatisable** in continuous logic **by** $Th_{sup}^{c}(C)$ if an only if it is closed under metric isomorphisms, ultraproducts and taking substructures.

Corollary

The classes \mathcal{G}_{sof} , $\mathcal{G}_{l.sof}$, \mathcal{G}_{hyplin} , $\mathcal{G}_{w.sof}$ are sup-axiomatisable (i.e. by its theories Th_{sup}^{c}).

- 4 同 ト 4 ヨ ト 4 ヨ

\mathcal{G}_{sof} , $\mathcal{G}_{l.sof}$, \mathcal{G}_{hyplin} , $\mathcal{G}_{w.sof}$ are axiomatisable!

Let C be a class of continuous metric structures. (For exmple let C be a class of mtrc grps as above, i.e. $C \subset G$.)

Theorem

The class C is **axiomatisable** in continuous logic **by** $Th_{sup}^{c}(C)$ if an only if it is closed under metric isomorphisms, ultraproducts and taking substructures.

Corollary

The classes \mathcal{G}_{sof} , $\mathcal{G}_{l.sof}$, \mathcal{G}_{hyplin} , $\mathcal{G}_{w.sof}$ are sup-axiomatisable (i.e. by its theories Th_{sup}^{c}).

/□ ▶ < 글 ▶ < 글

Let p be a prime number ≥ 13 . Let us consider the cyclic group $\mathbb{Z}(p)$ with respect to so called Lee norm and Lee distances:

$$I_{Lee}(a)=rac{2min(a,p-a)}{p-1}$$
 , $d_{Lee}(a,b)=I_{Lee}(a-b).$

(V.Batagelj , *J.Combin.Inform. System Sci.* 20(1995), no. 1 - 4, 243 - 252.)

Theorem

The metric group $(\mathbb{Z}(p), d_{Lee})$ does not belong to the classes $\mathcal{G}_{sof} \cup \mathcal{G}_{I.sof} \cup \mathcal{G}_{hyplin}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\mathcal{G}_{sof} \neq \mathcal{G}_{w.sof}.$

Let p be a prime number ≥ 13 . Let us consider the cyclic group $\mathbb{Z}(p)$ with respect to so called Lee norm and Lee distances:

$$I_{Lee}(a)=rac{2min(a,p-a)}{p-1}$$
 , $d_{Lee}(a,b)=I_{Lee}(a-b).$

(V.Batagelj , *J.Combin.Inform. System Sci.* 20(1995), no. 1 - 4, 243 - 252.)

Theorem

The metric group $(\mathbb{Z}(p), d_{Lee})$ does not belong to the classes $\mathcal{G}_{sof} \cup \mathcal{G}_{I.sof} \cup \mathcal{G}_{hyplin}$.

伺 ト イ ヨ ト イ ヨ

Reduction to the case of discrete structures

If two classes \mathcal{K}_1 , \mathcal{K}_2 from the collection

$\{\mathcal{G}, \mathcal{G}_{\textit{sof}}, \mathcal{G}_{\textit{w.sof}}, \mathcal{G}_{\textit{hyplin}}, \mathcal{G}_{\textit{l.sof}}\}$

have the same countable discrete structures, then $\mathcal{K}_1=\mathcal{K}_2.$

Indeed if \mathcal{K}_1 and \mathcal{K}_2 have the same discrete structures then they are generated as axiomatizable classes by the same set of structures.

Theorem

Let (G, d) be a bi-invariant metric group so that $d \le 1$. Then the following statements hold.

1. (G,d) is a closed subgroup of a metric ultraproduct of discrete bi-invriant metric groups.

2. If (G, d) is hyperlinear then (G, d) is a closed subgroup of a metric ultraproduct of discrete bi-invriant metric groups which are hyperlinear.

Reduction to the case of discrete structures

If two classes \mathcal{K}_1 , \mathcal{K}_2 from the collection

```
\{\mathcal{G}, \mathcal{G}_{\text{sof}}, \mathcal{G}_{\text{w.sof}}, \mathcal{G}_{\text{hyplin}}, \mathcal{G}_{\text{l.sof}}\}
```

have the same countable discrete structures, then $\mathcal{K}_1 = \mathcal{K}_2$.

Indeed if \mathcal{K}_1 and \mathcal{K}_2 have the same discrete structures then they are generated as axiomatizable classes by the same set of structures.

Theorem

Let (G, d) be a bi-invariant metric group so that $d \leq 1$. Then the following statements hold.

1. (G,d) is a closed subgroup of a metric ultraproduct of discrete bi-invriant metric groups.

2. If (G, d) is hyperlinear then (G, d) is a closed subgroup of a metric ultraproduct of discrete bi-invriant metric groups which are hyperlinear.

Reduction to the case of discrete structures

If two classes \mathcal{K}_1 , \mathcal{K}_2 from the collection

```
\{\mathcal{G}, \mathcal{G}_{\textit{sof}}, \mathcal{G}_{\textit{w.sof}}, \mathcal{G}_{\textit{hyplin}}, \mathcal{G}_{\textit{l.sof}}\}
```

have the same countable discrete structures, then $\mathcal{K}_1=\mathcal{K}_2.$

Indeed if \mathcal{K}_1 and \mathcal{K}_2 have the same discrete structures then they are generated as axiomatizable classes by the same set of structures.

Theorem

Let (G, d) be a bi-invariant metric group so that $d \le 1$. Then the following statements hold.

1. (G, d) is a closed subgroup of a metric ultraproduct of discrete bi-invriant metric groups.

2. If (G, d) is hyperlinear then (G, d) is a closed subgroup of a metric ultraproduct of discrete bi-invriant metric groups which are hyperlinear.

M.Doucha:

any member of G is a closed subgroup of a metric ultraproduct of finitely generated free groups with discrete bi-invriant metrics ≤ 1 .

Problem: $\mathcal{G}_{w.sof} = \mathcal{G}$?

It is enough to prove that any finitely generated free group with a discrete bi-invariant metric ≤ 1 is weakly sofic,

The question is equivalent to extreme amenability of the universal Polish metric group (\mathbb{G}, d) constructed by M.Doucha.

▲ □ ▶ ▲ 三 ▶ ▲

M.Doucha:

any member of G is a closed subgroup of a metric ultraproduct of finitely generated free groups with discrete bi-invriant metrics ≤ 1 .

Problem: $\mathcal{G}_{w.sof} = \mathcal{G}$?

It is enough to prove that any finitely generated free group with a discrete bi-invariant metric ≤ 1 is weakly sofic,

The question is equivalent to extreme amenability of the universal Polish metric group (\mathbb{G}, d) constructed by M.Doucha.

M.Doucha:

any member of G is a closed subgroup of a metric ultraproduct of finitely generated free groups with discrete bi-invriant metrics ≤ 1 .

Problem: $\mathcal{G}_{w.sof} = \mathcal{G}$?

It is enough to prove that any finitely generated free group with a discrete bi-invariant metric ≤ 1 is weakly sofic,

The question is equivalent to extreme amenability of the universal Polish metric group (\mathbb{G}, d) constructed by M.Doucha.

・ 同 ト ・ ヨ ト ・ ヨ

M.Doucha:

any member of G is a closed subgroup of a metric ultraproduct of finitely generated free groups with discrete bi-invriant metrics ≤ 1 .

Problem: $\mathcal{G}_{w.sof} = \mathcal{G}$?

It is enough to prove that any finitely generated free group with a discrete bi-invariant metric ≤ 1 is weakly sofic,

The question is equivalent to extreme amenability of the universal Polish metric group (\mathbb{G}, d) constructed by M.Doucha.

同 ト イ ヨ ト イ ヨ ト

Let $(G, d) \in \mathcal{G}$ and $\varepsilon \in [0, 1]$. Let:

$$d_arepsilon(g,h)=rac{d(g,h)+arepsilon}{1+arepsilon}$$
 , for $g
eq h.$

We call d_{ε} the ε -shift of d. (G, d_{ε}) is discrete.

Theorem

If (G, d) is a hyperlinear (resp. sofic) metric group then (G, d_{ε}) is a hyperlinear (resp. sofic) metric group too.

There is a version of this theorem for linear soficity, where for $g \neq h$,

$$d^{\omega}_{arepsilon}(g,h)\geq rac{arepsilon}{4+4arepsilon};$$

・ 一 ・ ・ ・ ・ ・ ・

Let $(G, d) \in \mathcal{G}$ and $\varepsilon \in [0, 1]$. Let:

$$d_arepsilon(g,h)=rac{d(g,h)+arepsilon}{1+arepsilon}$$
 , for $g
eq h.$

We call d_{ε} the ε -shift of d. (G, d_{ε}) is discrete.

Theorem

If (G, d) is a hyperlinear (resp. sofic) metric group then (G, d_{ε}) is a hyperlinear (resp. sofic) metric group too.

There is a version of this theorem for linear soficity, where for $g \neq h$,

$$d^{\omega}_{arepsilon}(g,h)\geq rac{arepsilon}{4+4arepsilon};$$

▲ □ ▶ ▲ □ ▶ ▲

Let $(G, d) \in \mathcal{G}$ and $\varepsilon \in [0, 1]$. Let:

$$d_arepsilon(g,h)=rac{d(g,h)+arepsilon}{1+arepsilon}$$
 , for $g
eq h.$

We call d_{ε} the ε -shift of d. (G, d_{ε}) is discrete.

Theorem

If (G, d) is a hyperlinear (resp. sofic) metric group then (G, d_{ε}) is a hyperlinear (resp. sofic) metric group too.

There is a version of this theorem for linear soficity, where for $g \neq h$,

$$d^{\omega}_{arepsilon}(g,h)\geq rac{arepsilon}{4+4arepsilon};$$

・ 一 ・ ・ ・ ・ ・ ・

Let $(G, d) \in \mathcal{G}$ and $\varepsilon \in [0, 1]$. Let:

$$d_arepsilon(g,h)=rac{d(g,h)+arepsilon}{1+arepsilon}$$
 , for $g
eq h.$

We call d_{ε} the ε -shift of d. (G, d_{ε}) is discrete.

Theorem

If (G, d) is a hyperlinear (resp. sofic) metric group then (G, d_{ε}) is a hyperlinear (resp. sofic) metric group too.

There is a version of this theorem for linear soficity, where for $g \neq h$,

$$d^{\omega}_{arepsilon}(g,h)\geq rac{arepsilon}{4+4arepsilon};$$

Theorem

Let d_1 and d_2 be bi-invariant metrics of G so that $(G, d_1), (G, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{l.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{l.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$)

Theorem

Let d_1 be bi-invariant metric of G and d_2 be a bi-invariant metric of G/H so that $(G, d_1), (G/H, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{l.sof}, \mathcal{G}_{w.sof}$). Let $\hat{d}_2(g_1, g_2) = d_2(g_1H, g_2H)$ for $g_1, g_2 \in G$ (pseudometric) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot \hat{d}_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{l.sof}, \mathcal{G}_{w.sof}$).

Theorem

Let d_1 and d_2 be bi-invariant metrics of G so that $(G, d_1), (G, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{I.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{I.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$).

Theorem

Let d_1 be bi-invariant metric of G and d_2 be a bi-invariant metric of G/H so that $(G, d_1), (G/H, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{l.sof}, \mathcal{G}_{w.sof}$). Let $\hat{d}_2(g_1, g_2) = d_2(g_1H, g_2H)$ for $g_1, g_2 \in G$ (pseudometric) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot \hat{d}_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{l.sof}, \mathcal{G}_{w.sof}$).

- 4 周 ト 4 戸 ト 4 戸 ト

Theorem

Let d_1 and d_2 be bi-invariant metrics of G so that $(G, d_1), (G, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{I.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{I.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$).

Theorem

Let d_1 be bi-invariant metric of G and d_2 be a bi-invariant metric of G/H so that $(G, d_1), (G/H, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{l.sof}, \mathcal{G}_{w.sof}$). Let $\hat{d}_2(g_1, g_2) = d_2(g_1H, g_2H)$ for $g_1, g_2 \in G$ (pseudometric) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot \hat{d}_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{l.sof}, \mathcal{G}_{w.sof}$).

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Theorem

Let d_1 and d_2 be bi-invariant metrics of G so that $(G, d_1), (G, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{I.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{I.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$).

Theorem

Let d_1 be bi-invariant metric of G and d_2 be a bi-invariant metric of G/H so that $(G, d_1), (G/H, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{I.sof}, \mathcal{G}_{w.sof}$). Let $\hat{d}_2(g_1, g_2) = d_2(g_1H, g_2H)$ for $g_1, g_2 \in G$ (pseudometric) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot \hat{d}_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{I.sof}, \mathcal{G}_{w.sof}$).

・ロト ・得ト ・ヨト ・ヨト

э

Theorem

Let d_1 and d_2 be bi-invariant metrics of G so that $(G, d_1), (G, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{I.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{I.sof}, \mathcal{G}_{hyplin}, \mathcal{G}_{w.sof}$).

Theorem

Let d_1 be bi-invariant metric of G and d_2 be a bi-invariant metric of G/H so that $(G, d_1), (G/H, d_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{I.sof}, \mathcal{G}_{w.sof}$). Let $\hat{d}_2(g_1, g_2) = d_2(g_1H, g_2H)$ for $g_1, g_2 \in G$ (pseudometric) and $q_1, q_2 \in \mathbb{Q}$ satisfy $q_1 + q_2 = 1$. Then $(G, q_1 \cdot d_1 + q_2 \cdot \hat{d}_2) \in \mathcal{G}_{sof}$ (resp. $\mathcal{G}_{hyplin}, \mathcal{G}_{I.sof}, \mathcal{G}_{w.sof}$).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Residually finite metric groups

Let Γ be an inverse limit of an inverse system C:

$$H_1 \leftarrow H_2 \leftarrow ... \leftarrow H_i \leftarrow ...,$$

where Γ canonically maps onto H_i by a homomorphism π_i . When C consist of finite metric groups (H_i, d_i) , Γ is in G with respect to the metric:

$$d_{\mathcal{C}}(g,h) = \sum_{i\geq 1} \frac{d_i(\pi_i(g),\pi_i(h))}{2^i}.$$

When $(G, d) < (\Gamma, d_{\mathcal{C}})$, we say that (G, d) is **residually finite**,

Theorem

Let (G, d) be a residually finite metric group with respect to an inverse system of finite metric groups which belong to the class \mathcal{G}_{sof} (resp. $\mathcal{G}_{l.sof}$, ...). Then G also belongs to \mathcal{G}_{sof} (resp. $\mathcal{G}_{l.sof}$,...).

Residually finite metric groups

Let Γ be an inverse limit of an inverse system C:

$$H_1 \leftarrow H_2 \leftarrow ... \leftarrow H_i \leftarrow ...,$$

where Γ canonically maps onto H_i by a homomorphism π_i . When C consist of finite metric groups (H_i, d_i) , Γ is in G with respect to the metric:

$$d_{\mathcal{C}}(g,h) = \sum_{i\geq 1} rac{d_i(\pi_i(g),\pi_i(h))}{2^i}.$$

When $(G, d) < (\Gamma, d_{\mathcal{C}})$, we say that (G, d) is **residually finite**,

Theorem

Let (G, d) be a residually finite metric group with respect to an inverse system of finite metric groups which belong to the class \mathcal{G}_{sof} (resp. $\mathcal{G}_{l.sof}$, ...). Then G also belongs to \mathcal{G}_{sof} (resp. $\mathcal{G}_{l.sof}$,...).

Residually finite metric groups

Let Γ be an inverse limit of an inverse system C:

$$H_1 \leftarrow H_2 \leftarrow ... \leftarrow H_i \leftarrow ...,$$

where Γ canonically maps onto H_i by a homomorphism π_i . When C consist of finite metric groups (H_i, d_i) , Γ is in G with respect to the metric:

$$d_{\mathcal{C}}(g,h) = \sum_{i\geq 1} rac{d_i(\pi_i(g),\pi_i(h))}{2^i}.$$

When $(G, d) < (\Gamma, d_{\mathcal{C}})$, we say that (G, d) is **residually finite**,

Theorem

Let (G, d) be a residually finite metric group with respect to an inverse system of finite metric groups which belong to the class \mathcal{G}_{sof} (resp. $\mathcal{G}_{I.sof}$, ...). Then G also belongs to \mathcal{G}_{sof} (resp. $\mathcal{G}_{I.sof}$,...).

Open questions:

 $\mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} = \mathcal{G}_{\mathsf{hyplin}} \mathsf{?}\ \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} = \mathcal{G}_{\mathsf{l.sof}} \mathsf{?} \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} \subseteq \mathcal{G}_{\mathsf{hyplin}} \mathsf{?}\ \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} \subseteq \mathcal{G}_{\mathsf{l.sof}} \mathsf{?}$

Identifying permutations of S_n with permutation matrices over \mathbb{C} we obtain:

$$d_H(\sigma,\tau) = \frac{1}{2} (d_{HS}(\sigma,\tau))^2 \text{ and}$$

$$\rho(\sigma,\tau) \le d_H(\sigma,\tau) \le 2\rho(\sigma,\tau).$$

 $\mathsf{ls}(S_n, d_{HS}) \in \mathcal{G}_{sof} ? \mathsf{ls}(S_n, \rho) \in \mathcal{G}_{sof} ?$

Open questions:

 $\mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} = \mathcal{G}_{\mathsf{hyplin}} \mathsf{?}\ \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} = \mathcal{G}_{\mathsf{l.sof}} \mathsf{?}\mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} \subseteq \mathcal{G}_{\mathsf{hyplin}} \mathsf{?}\ \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} \subseteq \mathcal{G}_{\mathsf{l.sof}} \mathsf{?}$

Identifying permutations of S_n with permutation matrices over \mathbb{C} we obtain:

$$d_H(\sigma,\tau) = \frac{1}{2} (d_{HS}(\sigma,\tau))^2 \text{ and}$$
$$\rho(\sigma,\tau) \le d_H(\sigma,\tau) \le 2\rho(\sigma,\tau).$$

 $\mathsf{ls}(S_n, d_{HS}) \in \mathcal{G}_{sof} ? \mathsf{ls}(S_n, \rho) \in \mathcal{G}_{sof} ?$

Open questions:

$$\mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} = \mathcal{G}_{\mathsf{hyplin}} \mathsf{?}\ \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} = \mathcal{G}_{\mathsf{l.sof}} \mathsf{?} \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} \subseteq \mathcal{G}_{\mathsf{hyplin}} \mathsf{?}\ \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} \subseteq \mathcal{G}_{\mathsf{l.sof}} \mathsf{?}$$

Identifying permutations of S_n with permutation matrices over \mathbb{C} we obtain:

$$d_H(\sigma, \tau) = \frac{1}{2} (d_{HS}(\sigma, \tau))^2$$
 and
 $\rho(\sigma, \tau) \le d_H(\sigma, \tau) \le 2\rho(\sigma, \tau).$

 $\mathsf{ls}(S_n, d_{HS}) \in \mathcal{G}_{sof}? \mathsf{ls}(S_n, \rho) \in \mathcal{G}_{sof}?$

□ > < = > <

Open questions:

$$\mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} = \mathcal{G}_{\mathsf{hyplin}} \mathsf{?}\ \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} = \mathcal{G}_{\mathsf{l.sof}} \mathsf{?} \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} \subseteq \mathcal{G}_{\mathsf{hyplin}} \mathsf{?}\ \mathsf{Is}\ \mathcal{G}_{\mathsf{sof}} \subseteq \mathcal{G}_{\mathsf{l.sof}} \mathsf{?}$$

Identifying permutations of S_n with permutation matrices over \mathbb{C} we obtain:

$$d_H(\sigma, \tau) = \frac{1}{2} (d_{HS}(\sigma, \tau))^2$$
 and
 $\rho(\sigma, \tau) \le d_H(\sigma, \tau) \le 2\rho(\sigma, \tau).$

$$\mathsf{ls}\;(S_n,d_{HS})\in\mathcal{G}_{sof}?\;\mathsf{ls}\;(S_n,\rho)\in\mathcal{G}_{sof}?$$

4 3 5 4

Let $(G, d) \in \mathcal{G}$ and let $f : [0, 1] \rightarrow [0, 1]$ be a function so that $d_f : G \times G \rightarrow [0, 1]$ given by $d_f(g, h) = f(d(g, h))$ defines a metric group (G, d_f) .

Problem: Describe functions *f* so that

 $(G,d) \in \mathcal{G}_{sof} \vdash (G,d_f) \in \mathcal{G}_{sof};$

 $(G,d) \in \mathcal{G}_{w.sof} \vdash (G,d_f) \in \mathcal{G}_{w.sof}.$

The last case is open even for $f(x) = \frac{x}{x+1}$.

- 同 ト - ヨ ト - - ヨ ト

Let $(G, d) \in \mathcal{G}$ and let $f : [0, 1] \rightarrow [0, 1]$ be a function so that $d_f : G \times G \rightarrow [0, 1]$ given by $d_f(g, h) = f(d(g, h))$ defines a metric group (G, d_f) .

Problem: Describe functions *f* so that

$$(G,d) \in \mathcal{G}_{sof} \vdash (G,d_f) \in \mathcal{G}_{sof};$$

. . .

$$(G,d) \in \mathcal{G}_{w.sof} \vdash (G,d_f) \in \mathcal{G}_{w.sof}.$$

The last case is open even for $f(x) = \frac{x}{x+1}$.

伺 ト イ ヨ ト イ ヨ ト

Let $(G, d) \in \mathcal{G}$ and let $f : [0, 1] \rightarrow [0, 1]$ be a function so that $d_f : G \times G \rightarrow [0, 1]$ given by $d_f(g, h) = f(d(g, h))$ defines a metric group (G, d_f) .

Problem: Describe functions *f* so that

$$(G,d) \in \mathcal{G}_{sof} \vdash (G,d_f) \in \mathcal{G}_{sof};$$

. . .

$$(G,d) \in \mathcal{G}_{w.sof} \vdash (G,d_f) \in \mathcal{G}_{w.sof}.$$

The last case is open even for $f(x) = \frac{x}{x+1}$.

伺 ト イ ヨ ト イ ヨ ト

Let $(G, d) \in \mathcal{G}$ and let $f : [0, 1] \rightarrow [0, 1]$ be a function so that $d_f : G \times G \rightarrow [0, 1]$ given by $d_f(g, h) = f(d(g, h))$ defines a metric group (G, d_f) .

Problem: Describe functions *f* so that

$$(G,d) \in \mathcal{G}_{sof} \vdash (G,d_f) \in \mathcal{G}_{sof};$$

. . .

$$(G,d) \in \mathcal{G}_{w.sof} \vdash (G,d_f) \in \mathcal{G}_{w.sof}.$$

The last case is open even for $f(x) = \frac{x}{x+1}$.