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Metric groups with bi-invariant metrics

We consider metric groups (G , ·, d) which are complete metric
spaces where the metric d is bi-invariant and is bounded by 1.

d(x1, x2) = d(x1 · y , x2 · y) = d(y · x1, y · x2)

for all y ∈ M.

Let G be the class of all metric groups as above.
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Ultraproducts

The metric in the ultraproduct
∏

I (Gi , di )/D is defined by

d((gi )I , (g
′
i )I ) = limi→Ddi (gi , g

′
i ),

i.e. by the rule that the distance between (gi )I and (g ′i )I is in the
interval (ε1, ε2) if and only if the set {i : di (gi , g

′
i ) ∈ (ε1, ε2)}

belongs to the ultrafilter D.∏
I (Gi , di )/D consists of classes of the relation d((xi )I , (yi )I ) = 0.
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Soficity

Hamming metric: For g , h ∈ Sn let

dH(g , h) = 1− Fix(g−1h)

n
.

An abstract group is sofic if it is embeddable into a metric
ultraproduct of finite symmetric groups with Hamming metrics.

Basic problem (Gromov): Is every group sofic?
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Linear soficity, weak soficity,...

For a, b ∈ GLn(C) let

ρ(a, b) = n−1rk(a− b).

An abstract group is linear sofic if it is embeddable into a metric
ultraproduct of {(GLn(C), ρ) : n ∈ N} (Arzhantseva, Päunescu).
An abstract group is weakly sofic if it is embeddable into a metric
ultraproduct of finite groups with bi-invariant metrics ≤ 1.

An abstract group is hyperlinear if it is embeddable into a metric
ultraproduct of {(Un(C), 1

2dHS) : n ∈ N}, where dHS is the
normalised Hilbert-Schmidt metric (i.e. the standard l2 distance
between matrices).
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Relations

Soficity ` Linear Soficity ` Weak soficity
and
Soficity ` Hyperlinearity

Problem: Is every group weakly sofic (hyperlinear)?
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Metric soficity

Metric sofic groups. Let Gsof be the class of complete metric
groups with bi-invariant metrics of diameter 1, which are
embeddable as closed metric subgroups into a metric ultraproduct
of finite symmetric groups with Hamming metrics.
The set of all abstract sofic groups consists of all discrete
structures of the class Gsof .

Is G = Gsof ?
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Linear sofic metric groups,...

Let us define:
Ghyplin = hyperlinear metric groups = metric groups with
bi-invariant metrics of diameter 1, which are embeddable as closed
subgroups into a metric ultraproduct of all (U(n), 1

2dHS), n ∈ N.
Gl .sof = linear sofic metric groups = .....
(GLn(C), ρ), n ∈ N.
Gw .sof = weakly sofic metric groups = ....
finite metric groups of diameter ≤ 1.
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Relations, the metric case

Gsof ⊆ Gw .sof ⊆ G

Gl .sof ⊆ Gw .sof
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Gsof , Gl .sof , Ghyplin, Gw .sof are axiomatisable!

Let C be a class of continuous metric structures.
(For exmple let C be a class of mtrc grps as above, i.e. C ⊂ G. )

Theorem

The class C is axiomatisable in continuous logic by Thcsup(C) if an
only if it is closed under metric isomorphisms, ultraproducts and
taking substructures.

Corollary

The classes Gsof , Gl .sof , Ghyplin, Gw .sof are sup-axiomatisable (i.e.
by its theories Thcsup).
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Gsof 6= Gw .sof .

Let p be a prime number ≥ 13. Let us consider the cyclic group
Z(p) with respect to so called Lee norm and Lee distances:

lLee(a) =
2min(a, p − a)

p − 1
, dLee(a, b) = lLee(a− b).

(V.Batagelj , J.Combin.Inform. System Sci. 20(1995), no. 1 - 4,
243 - 252.)

Theorem

The metric group (Z(p), dLee) does not belong to the classes
Gsof ∪ Gl .sof ∪ Ghyplin.
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Reduction to the case of discrete structures

If two classes K1 , K2 from the collection

{G,Gsof ,Gw .sof ,Ghyplin,Gl .sof }
have the same countable discrete structures, then K1 = K2.

Indeed if K1 and K2 have the same discrete structures then they
are generated as axiomatizable classes by the same set of
structures.

Theorem

Let (G , d) be a bi-invariant metric group so that d ≤ 1. Then the
following statements hold.
1. (G , d) is a closed subgroup of a metric ultraproduct of discrete
bi-invriant metric groups.
2. If (G , d) is hyperlinear then (G , d) is a closed subgroup of a
metric ultraproduct of discrete bi-invriant metric groups which are
hyperlinear.
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Weakly sofic metric groups

M.Doucha:
any member of G is a closed subgroup of a metric ultraproduct of
finitely generated free groups with discrete bi-invriant metrics ≤ 1.

Problem: Gw .sof = G?

It is enough to prove that any finitely generated free group with a
discrete bi-invariant metric ≤ 1 is weakly sofic,

The question is equivalent to extreme amenability of the universal
Polish metric group (G, d) constructed by M.Doucha.
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Shifting metrics

Let (G , d) ∈ G and ε ∈ [0, 1]. Let:

dε(g , h) =
d(g , h) + ε

1 + ε
, for g 6= h.

We call dε the ε-shift of d .
(G , dε) is discrete.

Theorem

If (G , d) is a hyperlinear (resp. sofic) metric group then (G , dε) is
a hyperlinear (resp. sofic) metric group too.

There is a version of this theorem for linear soficity, where for
g 6= h,

dω
ε (g , h) ≥ ε

4 + 4ε
;
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Linear combinations

Theorem

Let d1 and d2 be bi-invariant metrics of G so that
(G , d1), (G , d2) ∈ Gsof (resp. Gl .sof , Ghyplin, Gw .sof )
and q1, q2 ∈ Q satisfy q1 + q2 = 1.
Then (G , q1 · d1 + q2 · d2) ∈ Gsof (resp. Gl .sof , Ghyplin, Gw .sof ).

Theorem

Let d1 be bi-invariant metric of G and
d2 be a bi-invariant metric of G/H so that
(G , d1), (G/H, d2) ∈ Gsof (resp. Ghyplin, Gl .sof , Gw .sof ).

Let d̂2(g1, g2) = d2(g1H, g2H) for g1, g2 ∈ G (pseudometric) and
q1, q2 ∈ Q satisfy q1 + q2 = 1.
Then (G , q1 · d1 + q2 · d̂2) ∈ Gsof (resp. Ghyplin, Gl .sof , Gw .sof ).
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Residually finite metric groups

Let Γ be an inverse limit of an inverse system C:

H1 ← H2 ← ...← Hi ← ...,

where Γ canonically maps onto Hi by a homomorphism πi .
When C consist of finite metric groups (Hi , di ), Γ is in G with
respect to the metric:

dC(g , h) =
∑
i≥1

di (πi (g), πi (h))

2i
.

When (G , d) < (Γ, dC), we say that (G , d) is residually finite,

Theorem

Let (G , d) be a residually finite metric group with respect to an
inverse system of finite metric groups which belong to the class
Gsof (resp. Gl .sof , ..). Then G also belongs to Gsof (resp. Gl .sof ,..).
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Metric transformations

Open questions:

Is Gsof = Ghyplin? Is Gsof = Gl .sof ?Is Gsof ⊆ Ghyplin? Is Gsof ⊆ Gl .sof ?

Identifying permutations of Sn with permutation matrices over C
we obtain:

dH(σ, τ) =
1

2
(dHS(σ, τ))2 and

ρ(σ, τ) ≤ dH(σ, τ) ≤ 2ρ(σ, τ).

Is (Sn, dHS) ∈ Gsof ? Is (Sn, ρ) ∈ Gsof ?
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Metric ultraproducts
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Changing metrics

Let (G , d) ∈ G and let f : [0, 1]→ [0, 1] be a function so that
df : G × G → [0, 1] given by df (g , h) = f (d(g , h)) defines a metric
group (G , df ).

Problem: Describe functions f so that

(G , d) ∈ Gsof ` (G , df ) ∈ Gsof ;

...

(G , d) ∈ Gw .sof ` (G , df ) ∈ Gw .sof .

The last case is open even for f (x) = x
x+1 .
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