
Extending Isometries in Metric Spaces with
Forbidden Subspaces

Gabriel Conant
University of Notre Dame

July 28, 2016
Workshop on Model Theory of Finite and Pseudofinite Structures

University of Leeds

Gabriel Conant (Notre Dame) Extending Isometries July 28, 2016 1 / 12



Let L be a language. Given L-structures A and B, we say B is
symmetric over A if:
(i) A is a substructure of B, and
(ii) every partial automorphism of A extends to a total automorphism

of B.

Definition
A class K of finite L-structures has the Hrushovski property if for all
A ∈ K there is a B ∈ K which is symmetric over A.
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Theorem (Hrushovski 1992)

The class of finite graphs has the Hrushovski property.

Theorem (Herwig)

Hrushovski property for:
• (1995) finite L-structures (L a finite relational language);
• (1995) finite triangle-free graphs.
• (1998) finite Kn-free graphs.

Theorem (Herwig-Lascar 2000)

Let L be a finite relational language and F a finite class of finite
L-structures. For any finite F-free L-structure A, if there is an F-free
L-structure which is symmetric over A, then there is a finite F-free
L-structure which is symmetric over A.
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Caution: “F-free L-structures” may not always coincide with
structures of the desired type. E.g., if L = {E} is the language of
graphs compare “Kn-free L-structure” with “Kn-free graph”.

Theorem (Solecki 2005)

The class of finite metric spaces has the Hrushovski property.

• Fix a finite metric space A. Let S ⊆ R≥0 be the set of distances
appearing in A.
• Let L = {ds(x , y) : s ∈ S}.
• Let F be the class of “bad cycles” (x1, . . . , xn) where

d(x1, xn) > d(x1, x2) + d(x2, x3) + . . .+ d(xn−1, xn),

and d(xi , xj) ∈ S.
• Interpret metric spaces as F-free L-structures.
• Tricky part: Extract a metric space from an F-free L-structure.

Gabriel Conant (Notre Dame) Extending Isometries July 28, 2016 4 / 12



Caution: “F-free L-structures” may not always coincide with
structures of the desired type. E.g., if L = {E} is the language of
graphs compare “Kn-free L-structure” with “Kn-free graph”.

Theorem (Solecki 2005)

The class of finite metric spaces has the Hrushovski property.

• Fix a finite metric space A. Let S ⊆ R≥0 be the set of distances
appearing in A.
• Let L = {ds(x , y) : s ∈ S}.
• Let F be the class of “bad cycles” (x1, . . . , xn) where

d(x1, xn) > d(x1, x2) + d(x2, x3) + . . .+ d(xn−1, xn),

and d(xi , xj) ∈ S.
• Interpret metric spaces as F-free L-structures.
• Tricky part: Extract a metric space from an F-free L-structure.

Gabriel Conant (Notre Dame) Extending Isometries July 28, 2016 4 / 12



Caution: “F-free L-structures” may not always coincide with
structures of the desired type. E.g., if L = {E} is the language of
graphs compare “Kn-free L-structure” with “Kn-free graph”.

Theorem (Solecki 2005)

The class of finite metric spaces has the Hrushovski property.

• Fix a finite metric space A. Let S ⊆ R≥0 be the set of distances
appearing in A.

• Let L = {ds(x , y) : s ∈ S}.
• Let F be the class of “bad cycles” (x1, . . . , xn) where

d(x1, xn) > d(x1, x2) + d(x2, x3) + . . .+ d(xn−1, xn),

and d(xi , xj) ∈ S.
• Interpret metric spaces as F-free L-structures.
• Tricky part: Extract a metric space from an F-free L-structure.

Gabriel Conant (Notre Dame) Extending Isometries July 28, 2016 4 / 12



Caution: “F-free L-structures” may not always coincide with
structures of the desired type. E.g., if L = {E} is the language of
graphs compare “Kn-free L-structure” with “Kn-free graph”.

Theorem (Solecki 2005)

The class of finite metric spaces has the Hrushovski property.

• Fix a finite metric space A. Let S ⊆ R≥0 be the set of distances
appearing in A.
• Let L = {ds(x , y) : s ∈ S}.

• Let F be the class of “bad cycles” (x1, . . . , xn) where

d(x1, xn) > d(x1, x2) + d(x2, x3) + . . .+ d(xn−1, xn),

and d(xi , xj) ∈ S.
• Interpret metric spaces as F-free L-structures.
• Tricky part: Extract a metric space from an F-free L-structure.

Gabriel Conant (Notre Dame) Extending Isometries July 28, 2016 4 / 12



Caution: “F-free L-structures” may not always coincide with
structures of the desired type. E.g., if L = {E} is the language of
graphs compare “Kn-free L-structure” with “Kn-free graph”.

Theorem (Solecki 2005)

The class of finite metric spaces has the Hrushovski property.

• Fix a finite metric space A. Let S ⊆ R≥0 be the set of distances
appearing in A.
• Let L = {ds(x , y) : s ∈ S}.
• Let F be the class of “bad cycles” (x1, . . . , xn) where

d(x1, xn) > d(x1, x2) + d(x2, x3) + . . .+ d(xn−1, xn),

and d(xi , xj) ∈ S.

• Interpret metric spaces as F-free L-structures.
• Tricky part: Extract a metric space from an F-free L-structure.

Gabriel Conant (Notre Dame) Extending Isometries July 28, 2016 4 / 12



Caution: “F-free L-structures” may not always coincide with
structures of the desired type. E.g., if L = {E} is the language of
graphs compare “Kn-free L-structure” with “Kn-free graph”.

Theorem (Solecki 2005)

The class of finite metric spaces has the Hrushovski property.

• Fix a finite metric space A. Let S ⊆ R≥0 be the set of distances
appearing in A.
• Let L = {ds(x , y) : s ∈ S}.
• Let F be the class of “bad cycles” (x1, . . . , xn) where

d(x1, xn) > d(x1, x2) + d(x2, x3) + . . .+ d(xn−1, xn),

and d(xi , xj) ∈ S.
• Interpret metric spaces as F-free L-structures.

• Tricky part: Extract a metric space from an F-free L-structure.

Gabriel Conant (Notre Dame) Extending Isometries July 28, 2016 4 / 12



Caution: “F-free L-structures” may not always coincide with
structures of the desired type. E.g., if L = {E} is the language of
graphs compare “Kn-free L-structure” with “Kn-free graph”.

Theorem (Solecki 2005)

The class of finite metric spaces has the Hrushovski property.

• Fix a finite metric space A. Let S ⊆ R≥0 be the set of distances
appearing in A.
• Let L = {ds(x , y) : s ∈ S}.
• Let F be the class of “bad cycles” (x1, . . . , xn) where

d(x1, xn) > d(x1, x2) + d(x2, x3) + . . .+ d(xn−1, xn),

and d(xi , xj) ∈ S.
• Interpret metric spaces as F-free L-structures.
• Tricky part: Extract a metric space from an F-free L-structure.

Gabriel Conant (Notre Dame) Extending Isometries July 28, 2016 4 / 12



We consider many different examples as generalized metric spaces
taking distances from arbitrary algebraic structures.

Definition

(1) A distance monoid is a totally and positively ordered commutative
monoid. Notation R = (R,⊕,≤,0).

(2) Given a distance monoid R, we have the natural notion of an
R-metric space.

(3) A distance monoid is archimedean if, for all r , s ∈ R>0 there is
some n > 0 such that s ≤ nr .

(4) A distance monoid is semi-archimedean if, for all r , s ∈ R>0, if
nr < s for all n > 0 then r ⊕ s = s.
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Examples:

(1) classical metric spaces: (R≥0,+,≤,0)

(2) ultrametric spaces: (R≥0,max,≤,0)
(3) metric spaces with integer distances and bounded diameter n:
Rn = ({0,1, . . . ,n},+n,≤,0) where +n is addition truncated at n.

(4) Delhommé, Laflamme, Pouzet, Sauer: Fix R ⊆ N, with 0 ∈ R.
Define the operation

u +R v := max{x ∈ R : x ≤ u + v}.

Assume +R is associative, and let R = (R,+R,≤,0).
(5) Kn-free graphs: R2-metric spaces forbidding Kn.
(6) metric spaces omitting triangles of bounded odd perimeter: Fix

n ≥ 3 odd and set δn = n+1
2 . Consider Rδn -metric spaces

forbidding triangles of odd perimeter at most n.

Each of these is an amalgamation class.
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Two Theorems

Theorem (C.)

For any semi-archimedean distance monoid R, the class of finite
R-metric spaces has the Hrushovski property.

Theorem (C.)

Fix a finite archimedean distance monoid R and a finite class F of
finite R-metric spaces satisfying certain technical conditions. For any
finite F-free R-metric space A, if there is an F-free R-metric space
which is symmetric over A, then there is a finite F-free R-metric space
which is symmetric over A.
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Theorem (C.)

For any semi-archimedean distance monoid R, the class of finite
R-metric spaces has the Hrushovski property.

• Interpret R-metric spaces as structures in LR = {dr (x , y) : r ∈ R}.
• It suffices to assume R is countable with finitely many archimedean

classes. Proceed by induction on the number of classes.
• Base case (R is archimedean): Essentially identical to Solecki’s

argument using Herwig-Lascar.
Key point: There are finitely many bad cycles if and only if R is
archimedean.
• Induction step: extend isometries by hand, using semi-archimedean

assumption to make things coherent.
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Theorem (C.)

Fix a finite archimedean distance monoid R and a finite class F of
finite R-metric spaces satisfying certain technical conditions. For any
finite F-free R-metric space A, if there is an F-free R-metric space
which is symmetric over A, then there is a finite F-free R-metric space
which is symmetric over A.

• Along with “bad cycles”, we add the forbidden family F to omitted
class in the application of Herwig-Lascar.
• But, for any A ∈ F , we need to also omit any LR-structure which

contains A after completing via the path metric. We call such an
LR-structure a path extension of A.
• “Certain technical conditions”

(i) Any F-free R-metric space also omits all path extensions of the
structures in F .

(ii) The maximal distance in R does not occur in any structure in F .
(Ensures F∗ is still finite.)
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Examples

Corollary

Let R be a finite archimedean distance monoid and F a finite class of
finite R-metric spaces such that:
(i) any F-free R-metric space also omits all path extensions of the

structures in F ;
(ii) the maximal distance in R does not occur in any structure in F .

If the class of finite F-free R-metric spaces is a Fraı̈ssé class, then it
has the Hrushovski property.

Example

(1) (Herwig) Kn-free graphs
(2) For n ≥ 3 odd, the class of metric spaces of diameter δn = n+1

2
omitting triangles of odd perimeter at most n.
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Questions

(1) Let R be an arbitrary distance monoid. Does the class of finite
R-metric spaces have the Hrushovski property?

Main obstacle: Herwig-Lascar breaks down in the presence of
definable equivalence relations.

(2) What about other classes of metric spaces coming from Cherlin’s
census?
(i) The example above is AδK1,K2,C0,C1

where K1 = K2 = δ = n+1
2 and

{C0,C1} = {3δ + 1,3δ + 2}.
(ii) Methods work for 1 ≤ K1 ≤ δ and all other parameters unchanged.

(3) The technical conditions are artifacts of amalgamating metric
spaces with the minimal path metric. There are other methods of
amalgamating–can the technical conditions be adapted for these
to include more examples?
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